Workshop topics

NSC R workshop

» Problem of missing data
Stef van Buuren > Strategies to deal with missing data
» Multiple imputation methodology to analyse incomplete data
» Using R package mice
Apr 28, 2022 - ZOOM

Motivation
Chapman & HalllCRC
Incerdiseipiinary Statiscics Serles
[¢]
Flexible Imputation
of Missing Data
SECOND EDITION
Stefvan Buwren 0 O » Real data are always incomplete
o

> Ad-hoc fixes do not (always) work

» Multiple imputation as principled and broadly applicable
approach

» Goal: get comfortable with a powerful way to deal with
incomplete data

» We use the mice package in R

Challenger space shuttle - 28 Jan 1986 - 7 deaths Challenger space shuttle - 28 Jan 1986 - 7 deaths

Figure 1.1 (a) Data examined in the pre-launch teleconference; (b) Complete data.
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Reading materials

» Van Buuren, S. and Groothuis-Oudshoorn, C.G.M. (2011).
mice: Multivariate Imputation by Chained Equations in R.
Journal of Statistical Software, 45(3), 1-67.
https://www.jstatsoft.org/article /view/v045i03

» Van Buuren, S. (2018). Flexible Imputation of Missing Data.
Second Edition. Chapman & Hall/CRC, Boca Raton, FL. Free
text: https://stefvanbuuren.name/fimd Order book:
https://www.crcpress.com/Flexible-Imputation-of- Missing-
Data-Second-Edition/Buuren/p/book /9781138588318

What is missing data?

Missing data are concealed from us, and that very fact
means we are at risk of misunderstanding, of drawing in-
correct conclusions, and of making poor decisions.

Further characterization of missing values

» Missing values are those values that are not observed
» Values do exist in theory, but we are unable to see them



Evolving views on missing data Missing data are the heart of statistics Sampling example

Sampls
» “Obviously the best way to treat missing data is not to have > Taking a sample ample
them.” (Orchard and Woodbury 1972) > Estimating a causal effect
> Soon-er or IaFer (usually soon.er), anyone Who”does. statistical > Predicting future outcome Population
analysis runs into problems with missing data” (Allison, 2002) > Combining data from different sources
» “Missing data are the heart of statistics”
Missing Data
Reasons Why are missing values problematic? Strategies to deal with missing data

Missing data can occur for a lot of reasons. For example » Cannot calculate. not even the mean
> Prevention

» Ad-hoc methods
» Weighting methods
» Likelihood methods, EM-algorithm

» Less information than planned

» Different analyses, different n's

» Systematic biases in the analysis

» Appropriate confidence interval, P-values?

» death, dropout, refusal, concealed
» sampling, experimental design
> join, merge, bind

» too far away, too small to observe » Multiple imputation
> power failure, budget exhausted, bad luck Missing data can severely complicate interpretation and analysis
Strategies to deal with missing data Listwise deletion, complete-case analysis Listwise deletion, complete-case analysis

» Prevention » Analyze only the complete records » Disadvantages

» Ad-hoc methods > Advantages > Wasteful

» Weighting methods » Simple (default in most software) > May not be possible
ikeli : » Unbiased under MCAR » Larger standard errors

> _

. Ilzlllkelh!]oIOd' methodf‘», EM-algorithm > Conservative standard errors, significance levels > Biased under MAR, even for simple statistics like the mean
ultiple imputation > Two special properties in regression ¥ Inconsistencies in reporting



Mean imputation

» Replace the missing values by the mean of the observed data
» Advantages

> Simple

» Unbiased for the mean, under MCAR

Regression imputation

» Also known as prediction
> Fit model for Y°P under listwise deletion
» Predict Y™ for records with missing Y's
> Replace missing values by prediction
> Advantages
» Under MAR, unbiased estimates of regression coefficients
» Good approximation to the (unknown) true data if explained
variance is high

» Favourite among data scientists and machine learners

Stochastic regression imputation

> Like regression imputation, but adds appropriate noise to the
predictions to reflect uncertainty
» Advantages
» Preserves the distribution of Y°bs
» Preserves the correlation between Y and X in the imputed
data

Mean imputation
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Stochastic regression imputation
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Mean imputation

» Disadvantages
» Disturbs the distribution
» Underestimates the variance
> Biases correlations to zero
» Biased under MAR

» AVOID (unless you know what you are doing)

Regression imputation

» Disadvantages
> Artificially increases correlations
» Systematically underestimates the variance
» Too optimistic P-values, too short confidence intervals

» AVOID. Harmful to statistical inference

Stochastic regression imputation

» Disadvantages
» Symmetric and constant error restrictive
» Single imputation incorrectly treats imputations as real data
» Not so simple anymore



Overview of assumptions needed

Unbiased Standard Error
Mean  Reg Weight Correlation
Listwise MCAR MCAR MCAR Too large
Pairwise MCAR MCAR MCAR Complicated
Mean MCAR - - Too small
Regression MAR MAR - Too small
Stochastic MAR MAR MAR Too small
LOCF - - - Too small
Indicator - - - Too small

Multiple imputation

Incomplete data  Imputed data  Analysis results  Pooled result

Statistical inference for @ (1)

The 100(1 — a)% confidence interval of a @ is calculated as

Q+ t(;»,pa/z)\/?,
where t(,,1_q/2) is the quantile corresponding to probability
1—a/2of t,.

For example, use t(10,0.975) = 2.23 for the 95% confidence
interval for v = 10.

Multiple imputation

» Imputes each missing value m times
» Variation between the m imputed values reflects our ignorance
about the true value

Three sources of variation

In summary, the total variance T stems from three sources:

1. U, the variance caused by the fact that we are taking a
sample rather than the entire population. This is the
conventional statistical measure of variability;

2. B, the extra variance caused by the fact that there are missing
values in the sample;

3. B/m, the extra simulation variance caused by the fact that
Qn itself is based on finite m.

Statistical inference for @ (2)

Suppose we test the null hypothesis @ = Qp for some specified
value Qp. We can find the P-value of the test as the probability

A2
P, =Pr {FL,,>7(QO TQ) ]

where Fy,, is an F distribution with 1 and v degrees of freedom.

Acceptance of multiple imputation

100 @ early publications
A "multiple imputation" in abstract
= "multiple imputation” in title
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Figure 1: Source: Scopus (May 27, 2021)

Multiple imputation

» Advantages

» Correct point and variance estimates
» Splits missing data problem from complete-data analysis
» Theoretical properties well established
> Flexible, widely applicable
» Extensible to MNAR
» Disadvantages

» Need to create and work with multiple imputed data sets
» May not always be most efficient

How large should m be?

Classic advice: m = 3,5,10. More recently: set m higher: 20-100.

Some advice:

» Use m =5 or m = 10 if the fraction of missing information is
low, v < 0.2.

» Develop your model with m = 5. Do final run with m equal to
percentage of incomplete cases.



Multiple imputation in mice

Inspect missing data pattern

md.pattern(nhanes)

age hyp bmi chl

0 8 9 10 27

Stripplot of observed and imputed data

stripplot(imp, pch = 20, cex = 1.2)

Generic workflow in mice

incomplete data imputed data analysis results pooled results

mice) /TN with() /ool
/ /

data frame mids mira mipo

Multiply impute the data

imp <- mice(nhanes, print = FALSE, maxit=10, seed = 24415)

Stripplot of observed and imputed data

age bmi
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Inspect the data

library("mice"
head (nhanes)

## age bmi hyp chl

## 1 1 NA NA NA
## 2 2227 1187
# 3 1 NA 1187
# 4 3 NA NA NA
# 5 120.4 1113
# 6 3 NA NA 184

Inspect the trace lines for convergence
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L
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Iteration

Fit the complete-data model

fit <- with(imp, lm(bmi ~ age))
est <- pool(fit)

summary (est)

## term estimate std.error statistic df p.valu
## 1 (Intercept) 30.5 2.45 12.46 7.2 3.94e-0
## 2 age -2.1 1.12 -1.87 10.8 8.89e-0



Creating univariate imputations

Predict imputed value from regression line

Gas consumption (cubic feet)
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Imputation based on two predictors

Gas consumption (cubic feet)
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Relation between temperature and gas consumption
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Drawing from the observed data
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We delete gas consumption of observation
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Predicted value + noise + parameter uncertainty

Gas consumption (cubic feet)
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PMM: Add two regression lines

Gas consumption (cubic feet)
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PMM: Select potential donors

Gas consumption (cubic feet)
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PMM: Select potential donors

Gas consumption (cubic feet)
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PMM: Predicted given 5°,C, ‘after insulation’

Gas consumption (cubic feet)
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PMM: Bayesian PMM: Draw a line

Gas consumption (cubic feet)
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Built-in imputation functions

https://amices.org/mice/reference/index.html

PMM:

Gas consumption (cubic feet)

PMM:

Gas consumption (cubic feet)

Define a matching range y + 0
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Creating multivariate imputations, MICE algorithm




Issues in multivariate imputation Fully conditional specification (FCS), MICE algorithm Imputation by fully conditional specification

» The predictors Y_; themselves can contain missing values;
» “Circular” dependence can occur, where Yj’“iS depends on

Y™, and vice versa; » Imputes multivariate missing data on a variable-by-variable
» Especially with large p and small n, collinearity or empty cells basis

can occur; » Requires a specification of an imputation model for each
» Derived variables; incomplete variable
» The ordering of the rows and columns can be meaningful, » Creates imputations per variable in an iterative fashion

e.g., as in longitudinal data;
Imputation can create impossible combinations, such as
pregnant grandfathers.

v

Imputation by fully conditional specification Imputation by fully conditional specification Imputation by fully conditional specification

Imputation by fully conditional specification Imputation by fully conditional specification - next iteration Imputation by fully conditional specification - next iteration




How many iterations?

Quick convergence

5-10 iterations is adequate for most problems
More iterations is A is high

Inspect the generated imputations

Monitor convergence to detect anomalies

vyvVyVYYVYY

Number of iterations

Watch out for situations where

» the correlations between the Y;'s are high;
» the missing data rates are high; or

> constraints on parameters across different variables exist.

That's it!

Non-convergence
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More R code and examples

» GitHub site: https://github.com/amices/mice

Convergence
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Conclusion
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Missing data are a fact of life, and actually interesting

There are many ways to treat missing data, only few are valid
Always try to prevent missing data

Use ad-hoc methods with caution

Multiple imputation is an all-round general purpose method
Many applications possible



